LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Eigenvalues for a combination between local and nonlocal p-Laplacians

Photo from academic.microsoft.com

Abstract In this paper we study the Dirichlet eigenvalue problem −Δpu−ΔJ,pu=λ|u|p−2u in Ω,u=0 in Ωc=RN∖Ω.$$\begin{array}{} \displaystyle -\Delta_p u-\Delta_{J,p}u =\lambda|u|^{p-2}u \text{ in } \Omega,\quad u=0 \, \text{ in } \, \Omega^c=\mathbb{R}^N\setminus\Omega. \end{array}$$ Here Ω is… Click to show full abstract

Abstract In this paper we study the Dirichlet eigenvalue problem −Δpu−ΔJ,pu=λ|u|p−2u in Ω,u=0 in Ωc=RN∖Ω.$$\begin{array}{} \displaystyle -\Delta_p u-\Delta_{J,p}u =\lambda|u|^{p-2}u \text{ in } \Omega,\quad u=0 \, \text{ in } \, \Omega^c=\mathbb{R}^N\setminus\Omega. \end{array}$$ Here Ω is a bounded domain in ℝN, Δpu is the standard local p-Laplacian and ΔJ,pu is a nonlocal p-homogeneous operator of order zero. We show that the first eigenvalue (that is isolated and simple) satisfies limp→∞$\begin{array}{} \displaystyle \lim_{p\to\infty} \end{array}$(λ1)1/p = Λ where Λ can be characterized in terms of the geometry of Ω. We also find that the eigenfunctions converge, u∞ = limp→∞$\begin{array}{} \displaystyle \lim_{p\to\infty} \end{array}$up, and find the limit problem that is satisfied in the limit.

Keywords: begin array; array; array displaystyle; end array; eigenvalues combination; combination local

Journal Title: Fractional Calculus and Applied Analysis
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.