LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Asphericity of positive free product length 4 relative group presentations

Photo from academic.microsoft.com

Abstract Excluding some exceptional cases, we determine the asphericity of the relative presentation ???? = 〈 G , x ∣ a ⁢ x m ⁢ b ⁢ x n 〉… Click to show full abstract

Abstract Excluding some exceptional cases, we determine the asphericity of the relative presentation ???? = 〈 G , x ∣ a ⁢ x m ⁢ b ⁢ x n 〉 {\mathcal{P}=\langle G,x\mid ax^{m}bx^{n}\rangle} , where a , b ∈ G ∖ { 1 } {a,b\in G\setminus\{1\}} and 1 ≤ m ≤ n {1\leq m\leq n} . If H = 〈 a , b 〉 ≤ G {H=\langle a,b\rangle\leq G} , the exceptional cases occur when a = b 2 {a=b^{2}} or when H is isomorphic to C 6 {C_{6}} .

Keywords: positive free; free product; relative group; asphericity positive; length relative; product length

Journal Title: Forum Mathematicum
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.