Abstract The simplicial wedge construction on simplicial complexes and simple polytopes has been used by a variety of authors to study toric and related spaces, including non-singular toric varieties, toric… Click to show full abstract
Abstract The simplicial wedge construction on simplicial complexes and simple polytopes has been used by a variety of authors to study toric and related spaces, including non-singular toric varieties, toric manifolds, intersections of quadrics and more generally, polyhedral products. In this paper we extend the analysis to include toric orbifolds. Our main results yield infinite families of toric orbifolds, derived from a given one, whose integral cohomology is free of torsion and is concentrated in even degrees, a property which might be termed integrally equivariantly formal. In all cases, it is possible to give a description of the cohomology ring and to relate it to the cohomology of the original orbifold.
               
Click one of the above tabs to view related content.