Abstract In this article, we revisit Rankin–Selberg integrals established by Jacquet, Piatetski-Shapiro and Shalika. We prove the equality of Rankin–Selberg local factors defined with Schwartz–Bruhat functions and the factors attached… Click to show full abstract
Abstract In this article, we revisit Rankin–Selberg integrals established by Jacquet, Piatetski-Shapiro and Shalika. We prove the equality of Rankin–Selberg local factors defined with Schwartz–Bruhat functions and the factors attached to good sections, introduced by Piatetski-Shapiro and Rallis. Moreover, we propose a notion of exceptional poles in the framework of good sections. For cases of Rankin–Selberg, Asai and exterior square L-functions, the exceptional poles are consistent with well-known exceptional poles which characterize certain distinguished representations.
               
Click one of the above tabs to view related content.