LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rankin–Selberg L-functions via good sections

Photo from academic.microsoft.com

Abstract In this article, we revisit Rankin–Selberg integrals established by Jacquet, Piatetski-Shapiro and Shalika. We prove the equality of Rankin–Selberg local factors defined with Schwartz–Bruhat functions and the factors attached… Click to show full abstract

Abstract In this article, we revisit Rankin–Selberg integrals established by Jacquet, Piatetski-Shapiro and Shalika. We prove the equality of Rankin–Selberg local factors defined with Schwartz–Bruhat functions and the factors attached to good sections, introduced by Piatetski-Shapiro and Rallis. Moreover, we propose a notion of exceptional poles in the framework of good sections. For cases of Rankin–Selberg, Asai and exterior square L-functions, the exceptional poles are consistent with well-known exceptional poles which characterize certain distinguished representations.

Keywords: good sections; selberg functions; exceptional poles; rankin selberg; via good; functions via

Journal Title: Forum Mathematicum
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.