Abstract This paper is devoted to a simple proof of the generalized Leibniz rule in bounded domains. The operators under consideration are the so-called spectral Laplacian and the restricted Laplacian.… Click to show full abstract
Abstract This paper is devoted to a simple proof of the generalized Leibniz rule in bounded domains. The operators under consideration are the so-called spectral Laplacian and the restricted Laplacian. Equations involving such operators have lately been considered by Constantin and Ignatova in the framework of the SQG equation [P. Constantin and M. Ignatova, Critical SQG in bounded domains, Ann. PDE 2 2016, 2, Article ID 8] in bounded domains, and by two of the authors [Q.-H. Nguyen and J. L. Vázquez, Porous medium equation with nonlocal pressure in a bounded domain, Comm. Partial Differential Equations 43 2018, 10, 1502–1539] in the framework of the porous medium with nonlocal pressure in bounded domains. We will use the estimates in this work in a forthcoming paper on the study of porous medium equations with pressure given by Riesz-type potentials.
               
Click one of the above tabs to view related content.