LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On weighted compactness of commutators of bilinear maximal Calderón–Zygmund singular integral operators

Photo by introspectivedsgn from unsplash

Abstract Let T be a bilinear Calderón–Zygmund singular integral operator and let T*{T^{*}} be its corresponding truncated maximal operator. For any b∈BMO⁡(ℝn){b\in\operatorname{BMO}({\mathbb{R}^{n}})} and b→=(b1,b2)∈BMO⁡(ℝn)×BMO⁡(ℝn){\vec{b}=(b_{1},b_{2})\in\operatorname{BMO}({\mathbb{R}^{n}})\times% \operatorname{BMO}({\mathbb{R}^{n}})}, let Tb,j*{T^{*}_{b,j}} (j=1,2{j=1,2}) and Tb→*{T^{*}_{\vec{b}}}… Click to show full abstract

Abstract Let T be a bilinear Calderón–Zygmund singular integral operator and let T*{T^{*}} be its corresponding truncated maximal operator. For any b∈BMO⁡(ℝn){b\in\operatorname{BMO}({\mathbb{R}^{n}})} and b→=(b1,b2)∈BMO⁡(ℝn)×BMO⁡(ℝn){\vec{b}=(b_{1},b_{2})\in\operatorname{BMO}({\mathbb{R}^{n}})\times% \operatorname{BMO}({\mathbb{R}^{n}})}, let Tb,j*{T^{*}_{b,j}} (j=1,2{j=1,2}) and Tb→*{T^{*}_{\vec{b}}} be the commutators in the j-th entry and the iterated commutators of T*{T^{*}}, respectively. In this paper, for all 1

Keywords: operatorname; mathbb; bmo; vec; calder zygmund; zygmund singular

Journal Title: Forum Mathematicum
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.