Abstract Let T be a bilinear Calderón–Zygmund singular integral operator and let T*{T^{*}} be its corresponding truncated maximal operator. For any b∈BMO(ℝn){b\in\operatorname{BMO}({\mathbb{R}^{n}})} and b→=(b1,b2)∈BMO(ℝn)×BMO(ℝn){\vec{b}=(b_{1},b_{2})\in\operatorname{BMO}({\mathbb{R}^{n}})\times% \operatorname{BMO}({\mathbb{R}^{n}})}, let Tb,j*{T^{*}_{b,j}} (j=1,2{j=1,2}) and Tb→*{T^{*}_{\vec{b}}}… Click to show full abstract
Abstract Let T be a bilinear Calderón–Zygmund singular integral operator and let T*{T^{*}} be its corresponding truncated maximal operator. For any b∈BMO(ℝn){b\in\operatorname{BMO}({\mathbb{R}^{n}})} and b→=(b1,b2)∈BMO(ℝn)×BMO(ℝn){\vec{b}=(b_{1},b_{2})\in\operatorname{BMO}({\mathbb{R}^{n}})\times% \operatorname{BMO}({\mathbb{R}^{n}})}, let Tb,j*{T^{*}_{b,j}} (j=1,2{j=1,2}) and Tb→*{T^{*}_{\vec{b}}} be the commutators in the j-th entry and the iterated commutators of T*{T^{*}}, respectively. In this paper, for all 1
               
Click one of the above tabs to view related content.