LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the number of rational points of certain algebraic varieties over finite fields

Photo from wikipedia

Abstract Let 𝔽 q {\mathbb{F}_{q}} be the finite field of odd characteristic p with q elements ( q = p n {q=p^{n}} , n ∈ ℕ {n\in\mathbb{N}} ) and let… Click to show full abstract

Abstract Let 𝔽 q {\mathbb{F}_{q}} be the finite field of odd characteristic p with q elements ( q = p n {q=p^{n}} , n ∈ ℕ {n\in\mathbb{N}} ) and let 𝔽 q * {\mathbb{F}_{q}^{*}} represent the set of nonzero elements of 𝔽 q {\mathbb{F}_{q}} . By making use of the Smith normal form of exponent matrices, we obtain an explicit formula for the number of rational points on the variety defined by the following system of equations over 𝔽 q {\mathbb{F}_{q}} : { ∑ i = 1 r a i ( 1 ) ⁢ x 1 e i ⁢ 1 ( 1 ) ⁢ ⋯ ⁢ x n e i ⁢ n ( 1 ) = b 1 , ∑ j ′ = 0 t - 1 ∑ i ′ = 1 r j ′ + 1 - r j ′ a r j ′ + i ′ ( 2 ) ⁢ x 1 e r j ′ + i ′ , 1 ( 2 ) ⁢ ⋯ ⁢ x n j ′ + 1 e r j ′ + i ′ , n j ′ + 1 ( 2 ) = b 2 , \left\{\begin{aligned} &\displaystyle\sum_{i=1}^{r}a^{(1)}_{i}x_{1}^{e_{i1}^{(% 1)}}\cdots x_{n}^{e_{in}^{(1)}}=b_{1},\\ &\displaystyle\sum^{t-1}_{j^{\prime}=0}\sum^{r_{j^{\prime}+1}-r_{j^{\prime}}}_% {i^{\prime}=1}a^{(2)}_{r_{j^{\prime}}+i^{\prime}}x_{1}^{e_{r_{j^{\prime}}+i^{% \prime},1}^{(2)}}\cdots x_{n_{{j^{\prime}}+1}}^{e_{r_{j^{\prime}}+i^{\prime},n% _{{j^{\prime}}+1}}^{(2)}}=b_{2},\end{aligned}\right.\vspace*{1mm} where b i ∈ 𝔽 q {b_{i}\in\mathbb{F}_{q}} ( i = 1 , 2 {i=1,2} ), t ∈ ℕ {t\in\mathbb{N}} , 0 = n 0 < n 1 < n 2 < ⋯ < n t , 0=n_{0}

Keywords: number rational; rational points; number; finite fields; vspace 1mm; prime prime

Journal Title: Forum Mathematicum
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.