LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly efficient artificial magnetic conductor enabled CPW fed compact antenna for BAN wearable applications

Photo from academic.microsoft.com

Abstract In this paper a coplanar waveguide feed (CPW) monopole antenna backed with artificial magnetic conductor (AMC) structure for efficient radiation has been presented for off-body wearable applications. A split… Click to show full abstract

Abstract In this paper a coplanar waveguide feed (CPW) monopole antenna backed with artificial magnetic conductor (AMC) structure for efficient radiation has been presented for off-body wearable applications. A split ring resonator (SRR) having thiner and longer lines to produce higher inductance and six splits with smaller gaps for high capacitance have been placed underneath CPW fed monopole to achieve resonance mode at a lower frequency. Higher values of inductance and capacitance produce resonant modes at relatively lower frequencies resulting in highly miniaturized antenna. The desired −10dB S11 bandwidth has been optimized firstly, by tuning/optimizing flow of surface currents with the help of several slots/slits and later by realizing AMC reflector with the help of full ground backed foam. The proposed antenna covers 2.45 GHz industrial, scientific and medical (ISM) band body area network (BAN) application and posses good front to back ratio (FBR) and thereby low and acceptable values of specific absorption rate (SAR). The proposed antenna has been designed and simulated using Ansys high frequency structured simulator and tested using vector network analyzer and anechoic chamber. The simulated and measured results well agree with each other.

Keywords: ban; cpw fed; wearable applications; artificial magnetic; magnetic conductor

Journal Title: Frequenz
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.