LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Kinetics analysis of the forward extraction of cerium(III) by D2EHPA from chloride medium in the presence of two complexing agents using a constant interfacial area cell with laminar flow

Photo from wikipedia

Abstract The kinetic studies performed on the forward extract of cerium(III) from chloride solution with the complex agents, citric acid (H3Cit) and lactic acid (HLac) in the presence of di-(2-ethylhexyl)phosphoric… Click to show full abstract

Abstract The kinetic studies performed on the forward extract of cerium(III) from chloride solution with the complex agents, citric acid (H3Cit) and lactic acid (HLac) in the presence of di-(2-ethylhexyl)phosphoric acid (D2EHPA, H2A2) have been investigated using a constant interfacial area cell with laminar flow. The effects of stirring speed, temperature, and specific interfacial area on the extraction rate are discussed separately, and the results show that the extraction process is a diffusion-controlled kinetics process with an interfacial reaction. Studies on the effect of pH value and H2A2 concentration on the extraction rate are used to obtain the rate equation. The rate-controlling step is also suggested by the predictions derived from the interfacial reaction models, and the rate equation obtained by the kinetic model is consistent with that obtained by the experimental results. The information on the extraction kinetics in this extraction system will provide some knowledge of its application.

Keywords: extraction; using constant; interfacial area; rate; cerium iii

Journal Title: Green Processing and Synthesis
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.