LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Algae-based green AgNPs, AuNPs, and FeNPs as potential nanoremediators

Photo by chatelp from unsplash

Abstract This review addresses green algae-based gold (Au), iron (Fe), and silver (Ag) nanoparticles (NPs) as eco-friendly nanomaterials to deal with biological, organic, and inorganic environmental contaminants. Among nanotechnological tools… Click to show full abstract

Abstract This review addresses green algae-based gold (Au), iron (Fe), and silver (Ag) nanoparticles (NPs) as eco-friendly nanomaterials to deal with biological, organic, and inorganic environmental contaminants. Among nanotechnological tools that can fully degrade, adsorb, and/or convert pollutants into less harmful structures, AgNPs, AuNPs, and FeNPs deserve highlight for their efficiency and low cost. However, green protocols are preferable to produce them in an eco-friendly manner. Although phycosynthesis is still in its infancy, algae present various advantages as green raw materials to NPs’ synthesis; fast growth rate, low-energy input requirement, low costs, easy and eco-friendly cultivation, and high tolerance to metals are examples. To allow their large-scale application, however, challenges regarding obtaining sufficient biomaterial with good reproducibility, designing protocols to achieve desirable features on NPs, and recovering the biocompatible nanomaterial after use still need attention. Perspectives for the field involve surpassing these limitations, broadening knowledge on synthesis mechanisms, protocols, and new species useful to offer, in the future, commercial eco-friendly, and low-cost phycosynthesized AuNPs, AgNPs, and FeNPs to nanoremediation. The potential of these NPs to deal with environmental contaminants, their advantageous characteristics and biocompatibility, the main limitations associated with their large-scale application, and future prospects for the field will receive attention.

Keywords: algae based; eco friendly; green agnps; based green; agnps aunps; aunps fenps

Journal Title: Green Processing and Synthesis
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.