Abstract High voltage electrostatic field (HVEF) treatment has been investigated as an optimization method for enhancing the bonding performance of wood via increasing its polarization degree and improvement of the… Click to show full abstract
Abstract High voltage electrostatic field (HVEF) treatment has been investigated as an optimization method for enhancing the bonding performance of wood via increasing its polarization degree and improvement of the penetration of phenol formaldehyde (PF) adhesive. As the wood surfaces from cross cut (C), radial cut (R) and tangential cut (T) behave differently, five cut combinations formed the samples to be tested, namely C-C, R-R, R-T, T-T (always parallel to grain) and T-T⊥, where the grains were perpendicular to each other. The gluing and HVEF treatments were performed simultaneously. The sample surfaces were characterized by electron spin resonance (ESR) spectroscopy, dynamic contact angle (CAdyn) measurements, X-ray densitometry, fluorescence microscopy, Fourier-transform infrared (FTIR) spectroscopy and measurements of compression shear bonding strength (CSBS). An increased surface energy led to decreased CAdynS in the following order: cross section
               
Click one of the above tabs to view related content.