LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cellulose triacetate from different sources: modification assessment through thermal and chemical characterization

Photo from wikipedia

Abstract Modification techniques have been widely employed to improve cellulose properties, thus increasing the diversity of industrial applications. While wood pulp cellulose is the most common source for industrial production,… Click to show full abstract

Abstract Modification techniques have been widely employed to improve cellulose properties, thus increasing the diversity of industrial applications. While wood pulp cellulose is the most common source for industrial production, little has been studied about the effects of the cellulose source and its purity on modification. Therefore, this article investigates the influence of cellulose source (e.g. wood or cotton) on its modification (acetylation), by estimating the obtained degree of substitution (DS) through Fourier-transform infrared (FT-IR), proton nuclear magnetic resonance (1H NMR) and back titration. The intense reduction in samples’ crystallinity after acetylation was a result of breakage of inter- and intra-molecular hydrogen bonds, thus confirming acetylation. Although Avicel showed the highest cellulose content and was virtually free of hemicellulose and lignin, this did not affect the acetylation degree, as all samples were successfully triacetylated. The techniques used in this study were ideal for detecting acetylation and estimating the DS, which makes them good tools for modification studies of cellulose derivatives.

Keywords: acetylation; different sources; triacetate different; cellulose triacetate; sources modification; modification

Journal Title: Holzforschung
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.