LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Silver electrochemical treatment of bamboo and its effect on decay fungi

Photo from wikipedia

Abstract In this study, a simple and effective method for preparing bamboo with high fungal resistance was first proposed. Flattened moso bamboo (Phyllostachys pubescens), which is a perishable species, was… Click to show full abstract

Abstract In this study, a simple and effective method for preparing bamboo with high fungal resistance was first proposed. Flattened moso bamboo (Phyllostachys pubescens), which is a perishable species, was connected to a silver plate and exposed to a high-voltage electrostatic field (HEVF). The method was based on HEVF excitation of a silver plate to produce silver ions and facilitate in situ impregnation of bamboo. Silver ions were present in the forms of Ag(0), Ag(I) and Ag(III) and reacted with bamboo functional groups under HVEF treatment. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analysis showed that compared to those of untreated bamboo, the O/C ratio and OH content of treated bamboo were lower, the number of CHO groups decreased, the number of CO groups increased, and silver interacted with the hemicellulose and lignin of bamboo. The concentration of silver ions increased with increasing treatment time and voltage. The silver ions were nanocrystalline, and the average particle size was 50 nm. The mass loss and moisture content of the treated bamboo decreased significantly after exposure to decay fungi. Therefore, in situ impregnation of silver with HVEF was a simple and effective method to improve the durability of bamboo materials.

Keywords: decay fungi; silver ions; bamboo; treatment; spectroscopy; silver

Journal Title: Holzforschung
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.