LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modulatory effect of tropisetron in the liver of streptozotocin-induced diabetes in rats: biochemical and histological evidence

Photo by kristian_lovstad from unsplash

Abstract Objectives There is an association between diabetes and liver disorders. Oxidative stress plays a crucial role in the pathology of hepatic abnormalities in diabetes. In this study, the effect… Click to show full abstract

Abstract Objectives There is an association between diabetes and liver disorders. Oxidative stress plays a crucial role in the pathology of hepatic abnormalities in diabetes. In this study, the effect of Tropisetron on the oxidative damage and histological alterations in the liver of type 1 diabetes mellitus (DM) were evaluated. Methods Thiry-five male Wistar rats were randomly divided into five experimental groups (n = 7): control (C), tropisetron (T), diabetes (D), diabetes + tropisetron (D + T) and diabetes + glibenclamide (D + G). A single injection of streptozotocin (STZ, 50 mg/kg; i.p) was used to induce diabetes. Tropisetron (3 mg/kg; i.p), as a 5-HT3 receptor antagonist and glibenclamide (1 mg/kg; i.p), as a positive control were given once daily for 2 weeks. Finally, animals were euthanized and liver samples were obtained for histopathological examination and biochemical measurements including malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx) levels. Results There is a significant increase in MDA (p < 0.001) level and a significant decrease (p < 0.001) in SOD and GPx contents in diabetic animals. Tropisetron attenuated MDA levels (p < 0.001) and enhanced SOD (p < 0.05) and GPx (p < 0.01) activities accompanied by histopathological improvement in the diabetes liver. Similar results were achieved in the rats treated with the standard drug, namely: glibenclamide. Conclusions Our findings indicate that tropisetron mitigates liver damage in the diabetes rats in part by attenuation of oxidative stress.

Keywords: diabetes rats; tropisetron; liver; effect tropisetron; streptozotocin

Journal Title: Hormone Molecular Biology and Clinical Investigation
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.