Abstract In a nickel-producing multiple hearth furnace, there is a problem associated to the automatic operation of the temperature control loops in two of the hearths, since the same flow… Click to show full abstract
Abstract In a nickel-producing multiple hearth furnace, there is a problem associated to the automatic operation of the temperature control loops in two of the hearths, since the same flow of air is split into two branches. A neural model of the post-combustion sub-process is built and served to increase the process efficiency of the industrial furnace. Data was taken for a three-months operating time period to identify the main variables characterizing the process and a model of multilayer perceptron type is built. For the validation of this model, process data from a four-months operating time period in 2018 was used and prediction errors based on a measure of closeness in terms of a mean square error criterion measured through its weights for the temperature of two of the hearths (four and six) versus the air flow to these hearths. Based on a rigorous testing and analysis of the process, the model is capable of predicting the temperature of hearth four and six with errors of 0.6 and 0.3 °C, respectively. In addition, the emissions by high concentration of carbon monoxide in the exhaust gases are reduced, thus contributing to the health of the ecosystem.
               
Click one of the above tabs to view related content.