Abstract With employing the von Karman plate theory, and considering the linearly thickness variation in one direction, the bending problem of a rectangular magnetoelectroelastic plates with linear variable thickness is… Click to show full abstract
Abstract With employing the von Karman plate theory, and considering the linearly thickness variation in one direction, the bending problem of a rectangular magnetoelectroelastic plates with linear variable thickness is investigated. According to the Maxwell’s equations, when applying the magnetoelectric load on the plate’s surfaces and neglecting the in-plane electric and magnetic fields in thin plates, the electric and magnetic potentials varying along the thickness direction for the magnetoelectroelastic plates are determined. The nonlinear differential equations for magnetoelectroelastic plates with linear variable thickness are established based on the Hamilton’s principle. The Galerkin procedure is taken to translate a set of differential equations into algebraic equations. The numerical examples are presented to discuss the influences of the aspect ratio and span–thickness ratio on the nonlinear load–deflection curves for magnetoelectroelastic plates with linear variable thickness. In addition, the induced electric and magnetic potentials are also presented with the various values of the taper constants.
               
Click one of the above tabs to view related content.