LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Finite Element Domain Decomposition Approximation for a Semilinear Parabolic Singularly Perturbed Differential Equation

Photo from wikipedia

Abstract In this paper, we propose a Monotone Schwarz Iterative Method (MSIM) under the framework of Domain Decomposition Strategy for solving semilinear parabolic singularly perturbed partial differential equations (SPPDEs). A… Click to show full abstract

Abstract In this paper, we propose a Monotone Schwarz Iterative Method (MSIM) under the framework of Domain Decomposition Strategy for solving semilinear parabolic singularly perturbed partial differential equations (SPPDEs). A three-step Taylor Galerkin Finite Element (3TGFE) approximation of semilinear parabolic SPPDE is carried out during each of the stages of the MSIM. Appropriate Interface Problems are introduced to update the subdomain boundary conditions in the Monotone Iterative Domain Decomposition (MIDD) method. The convergence of the MIDD method has been established. In addition, the stability and ϵ$\epsilon$-uniform convergence of 3TGFE based MIDD has been discussed. Further, by using maximum principle and induction hypothesis, the convergence of the proposed MSIM has been established. Also, the proposed 3TGFE based MIDD has been successfully implemented on a couple of test problems.

Keywords: semilinear parabolic; singularly perturbed; parabolic singularly; domain decomposition

Journal Title: International Journal of Nonlinear Sciences and Numerical Simulation
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.