Abstract The group algebras kQ2n{kQ_{2^{n}}} of the generalized quaternion groups Q2n{Q_{2^{n}}} over fields k which contain ????2n-2{\mathbb{F}_{2^{n-2}}} are deformed to separable k((t)){k((t))}-algebras [kQ2n]t{[kQ_{2^{n}}]_{t}}. The dimensions of the simple components of… Click to show full abstract
Abstract The group algebras kQ2n{kQ_{2^{n}}} of the generalized quaternion groups Q2n{Q_{2^{n}}} over fields k which contain ????2n-2{\mathbb{F}_{2^{n-2}}} are deformed to separable k((t)){k((t))}-algebras [kQ2n]t{[kQ_{2^{n}}]_{t}}. The dimensions of the simple components of k((t))¯⊗k((t))[kQ2n]t{\overline{k((t))}\otimes_{k((t))}[kQ_{2^{n}}]_{t}} over the algebraic closure k((t))¯{\overline{k((t))}}, and those of ℂQ2n{\mathbb{C}Q_{2^{n}}} over ℂ{\mathbb{C}} are the same, yielding strong solutions of the Donald–Flanigan conjecture for the generalized quaternion groups.
               
Click one of the above tabs to view related content.