LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Separable deformations of the generalized quaternion group algebras

Photo by papaioannou_kostas from unsplash

Abstract The group algebras k⁢Q2n{kQ_{2^{n}}} of the generalized quaternion groups Q2n{Q_{2^{n}}} over fields k which contain ????2n-2{\mathbb{F}_{2^{n-2}}} are deformed to separable k⁢((t)){k((t))}-algebras [k⁢Q2n]t{[kQ_{2^{n}}]_{t}}. The dimensions of the simple components of… Click to show full abstract

Abstract The group algebras k⁢Q2n{kQ_{2^{n}}} of the generalized quaternion groups Q2n{Q_{2^{n}}} over fields k which contain ????2n-2{\mathbb{F}_{2^{n-2}}} are deformed to separable k⁢((t)){k((t))}-algebras [k⁢Q2n]t{[kQ_{2^{n}}]_{t}}. The dimensions of the simple components of k⁢((t))¯⊗k⁢((t))[k⁢Q2n]t{\overline{k((t))}\otimes_{k((t))}[kQ_{2^{n}}]_{t}} over the algebraic closure k⁢((t))¯{\overline{k((t))}}, and those of ℂ⁢Q2n{\mathbb{C}Q_{2^{n}}} over ℂ{\mathbb{C}} are the same, yielding strong solutions of the Donald–Flanigan conjecture for the generalized quaternion groups.

Keywords: generalized quaternion; group algebras; deformations generalized; group; separable deformations

Journal Title: Journal of Group Theory
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.