LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evolution of microstructure and electrochemical corrosion characteristics of cold compacted magnesium

Photo from wikipedia

Abstract The main advantage of magnesium and its alloys is high specific strength and biocompatibility. A modern approach to magnesium-based materials preparation is powder metallurgy. This technique allows preparation of… Click to show full abstract

Abstract The main advantage of magnesium and its alloys is high specific strength and biocompatibility. A modern approach to magnesium-based materials preparation is powder metallurgy. This technique allows preparation of new materials with a unique structure, chemical composition, and controlled porosity. In this study, cold compaction of magnesium powder was studied. Magnesium powder of average particle size of 30 μm was compacted applying pressures of 100 MPa, 200 MPa, 300 MPa, 400 MPa and 500 MPa at laboratory temperature. Influence of compacting pressure was studied with microstructural and electrochemical corrosion characteristics analysis. The resulting microstructure was studied in terms of light and electron microscopy. Obtained electrochemical characteristics were compared with those of wrought magnesium. Compacting pressure had a significant influence on microstructure and electrochemical characteristics of prepared bulk magnesium. With the increase in compaction pressure, the porosity decreased. Compacting pressures of 300 MPa, 400 MPa and 500 MPa led to the similar microstructure of the prepared material. Polarization resistance of compacted magnesium was much lower and samples degraded faster when compared to wrought magnesium. Also, the corrosion degradation mechanism changed due to the microstructural differences between the material states.

Keywords: electrochemical corrosion; corrosion characteristics; microstructure electrochemical; magnesium; microstructure

Journal Title: Koroze a ochrana materialu
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.