LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On split Lie color triple systems

Photo from wikipedia

Abstract In order to begin an approach to the structure of arbitrary Lie color triple systems, (with no restrictions neither on the dimension nor on the base field), we introduce… Click to show full abstract

Abstract In order to begin an approach to the structure of arbitrary Lie color triple systems, (with no restrictions neither on the dimension nor on the base field), we introduce the class of split Lie color triple systems as the natural generalization of split Lie triple systems. By developing techniques of connections of roots for this kind of triple systems, we show that any of such Lie color triple systems T with a symmetric root system is of the form T = U + ∑[α]∈Λ1/∼ I[α] with U a subspace of T0 and any I[α] a well described (graded) ideal of T, satisfying {I[α], T, I[β]} = 0 if [α] ≠ [β]. Under certain conditions, in the case of T being of maximal length, the simplicity of the triple system is characterized.

Keywords: split lie; color triple; lie color; triple systems

Journal Title: Open Mathematics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.