Abstract The main result of this paper is the embedding Bβs,r(Ω)↪Bβ+(n−1)(1s−1s1)s1,r1(Ω), $$\begin{array}{} \displaystyle \mathcal{B}^{s,r}_\beta({\it\Omega})\hookrightarrow \mathcal{B}^{s_1,r_1}_{\beta+(n-1)\big(\frac 1s-\frac 1{s_1}\big)}({\it\Omega}), \end{array}$$ 0 < r ≤ r1 ≤ ∞, 0 < s ≤ s1… Click to show full abstract
Abstract The main result of this paper is the embedding Bβs,r(Ω)↪Bβ+(n−1)(1s−1s1)s1,r1(Ω), $$\begin{array}{} \displaystyle \mathcal{B}^{s,r}_\beta({\it\Omega})\hookrightarrow \mathcal{B}^{s_1,r_1}_{\beta+(n-1)\big(\frac 1s-\frac 1{s_1}\big)}({\it\Omega}), \end{array}$$ 0 < r ≤ r1 ≤ ∞, 0 < s ≤ s1 ≤ ∞, β > –1, of harmonic functions mixed norm spaces on a smoothly bounded domain Ω ⊂ ℝn. We also extend a result on boundedness, in mixed norm, of a maximal function-type operator from the case of the unit disc and the unit ball to general domains in ℝn.
               
Click one of the above tabs to view related content.