LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fundamental limits of hot carrier injection from metal in nanoplasmonics

Photo by viazavier from unsplash

Abstract The evolution of non-equilibrium carriers excited in the process of decay of surface plasmon polaritons (SPPs) in metal is described for each step – from the generation of carriers… Click to show full abstract

Abstract The evolution of non-equilibrium carriers excited in the process of decay of surface plasmon polaritons (SPPs) in metal is described for each step – from the generation of carriers to their extraction from the metal. The relative importance of various carrier-generating mechanisms is discussed. It is shown that both the generation of carriers and their decay are inherently quantum processes as, for realistic illumination conditions, no more than a single SPP per nanoparticle exists at a given time. As a result, the distribution of non-equilibrium carriers cannot be described by a single temperature. It is also shown that the originally excited carriers that have not undergone a single electron-electron scattering event are practically the only ones that contribute to the injection. The role of momentum conservation in carrier extraction is discussed, and it is shown that, if all the momentum conservation rules are relaxed, it is the density of states in the semiconductor/dielectric that determines the ultimate injection efficiency. A set of recommendations aimed at improving the efficiency of plasmonic-assisted photodetection and (to a lesser degree) photocatalysis is made in the end.

Keywords: limits hot; metal; carrier; fundamental limits; hot carrier; injection

Journal Title: Nanophotonics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.