LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ligand-modulated electron transfer rates from CsPbBr3 nanocrystals to titanium dioxide

Photo from wikipedia

Abstract In most perovskite nanocrystal (PeNC)-based optoelectronic and photonic applications, surface ligands inevitably lead to a donor–bridge–acceptor charge transfer configuration. In this article, we demonstrate successful modulation of electron transfer… Click to show full abstract

Abstract In most perovskite nanocrystal (PeNC)-based optoelectronic and photonic applications, surface ligands inevitably lead to a donor–bridge–acceptor charge transfer configuration. In this article, we demonstrate successful modulation of electron transfer (ET) rates from all-inorganic CsPbBr3 PeNCs to mesoporous titanium dioxide films, by using different surface ligands including single alkyl chain oleic acid and oleylamine, cross-linked insulating (3-aminopropyl)triethoxysilane and aromatic naphthoic acid molecules as the ligand-bridge. We systematically investigated the ET process through time-resolved photoluminescence spectroscopy. Calculations verified the ligand-bridge barrier effect of the three species upon the ET process. Transient absorption measurements excluded carrier-delocalization effect of the naphthoic acid ligands and confirmed the bridge-barrier effect. Our work provides a perspective for composable and appropriate ligands design for diverse practical purposes.

Keywords: bridge; titanium dioxide; electron transfer; transfer; transfer rates

Journal Title: Nanophotonics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.