LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Combining one and two photon polymerization for accelerated high performance (3 + 1)D photonic integration

Photo from wikipedia

Abstract Dense and efficient circuits with component sizes approaching the physical limit is the hallmark of high performance integration. Ultimately, these features and their pursuit enabled the multi-decade lasting exponential… Click to show full abstract

Abstract Dense and efficient circuits with component sizes approaching the physical limit is the hallmark of high performance integration. Ultimately, these features and their pursuit enabled the multi-decade lasting exponential increase of components on integrated electronic chips according to Moore’s law, which culminated with the high performance electronics we know today. However, current fabrication technology is mostly constrained to 2D lithography, and thermal energy dissipation induced by switching electronic signal lines presents a fundamental challenge for truly 3D electronic integration. Photonics reduces this problem, and 3D photonic integration is therefore a highly sought after technology that strongly gains in relevance due to the need for scalable application-specific integrated circuits for neural networks. Direct laser writing of a photoresin is a promising high-resolution and complementary metal-oxide-semiconductor (CMOS) compatible tool for 3D photonic integration. Here, we combine one and two-photon polymerization (TPP) for waveguide integration for the first time, dramatically accelerating the fabrication process and increasing optical confinement. 3D additive printing is based on femtosecond TPP, while blanket irradiation with a UV lamp induces one-photon polymerization (OPP) throughout the entire 3D chip. We locally and dynamically adjust writing conditions to implement (3 + 1)D flash-TPP: waveguide cores are printed with a small distance between neighboring writing voxels to ensure smooth interfaces, mechanical support structures are printed at maximal distance between the voxels to speed up the process. Finally, the entire chip’s passive volume not part of waveguide cores or mechanical support is polymerized in a single instance by UV blanket irradiation. This decouples fabrication time from the passive volume’s size. We succeed in printing vertical single-mode waveguides of 6 mm length that reach numerical apertures up to NA = 0.16. Noteworthy, we achieve exceptionally low −0.26 dB injection losses and very low propagation losses of −1.36 dB/mm at λ0 = 660 nm, which is within one order of magnitude of standard integrated silicon photonics. Finally, the optical performance of our waveguides does not deteriorate for at least ∼3000 h after printing, and remains stable during ∼600 h of continuous operation with 0.25 mW injected light.

Keywords: high performance; integration; performance; photonic integration; photon polymerization

Journal Title: Nanophotonics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.