LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lipase mediated synthesis of polycaprolactone and its silica nanohybrid

Photo by gabrielle_photo from unsplash

Abstract In this study, rice husk ash (RHA) silanized with 3-glycidyloxypropyl trimethoxysilane was used as support material to immobilize Candida antarctica lipase B. The developed biocatalyst was then utilized in… Click to show full abstract

Abstract In this study, rice husk ash (RHA) silanized with 3-glycidyloxypropyl trimethoxysilane was used as support material to immobilize Candida antarctica lipase B. The developed biocatalyst was then utilized in the ring opening polymerization (ROP) of ε-caprolactone and in situ development of PCL/Silica nanohybrid. The silanization degree of RHA was determined as 4 % (w) by thermal gravimetric analysis (TGA). Structural investigations and calculation of molecular weights of nanohybrids were realized by proton nuclear magnetic resonance (1H NMR). Crystallinity was determined by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Scanning Electron Microscopy (SEM) was used for morphological observations. Accordingly, the PCL composition in the nanohybrid was determined as 4 %, approximately. Short chained amorphous PCL was synthesized with a number average molecular weight of 4400 g/mol and crystallinity degree of 23 %. In regards to these properties, synthesized PCL/RHA composite can find use biomedical applications.

Keywords: lipase mediated; synthesis polycaprolactone; lipase; silica nanohybrid; mediated synthesis

Journal Title: Pure and Applied Chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.