LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

TiO2 microrods with stacked 3D nanovoids for photoelectrochemical water splitting

Photo by a2eorigins from unsplash

Abstract This paper reports an original nonstandard green concept to obtain TiO2 microrods with polyhedral densely stacked 3D nanovoids prepared via the heat treatment of a hydrogen titanate. The intermediate… Click to show full abstract

Abstract This paper reports an original nonstandard green concept to obtain TiO2 microrods with polyhedral densely stacked 3D nanovoids prepared via the heat treatment of a hydrogen titanate. The intermediate hydrogen titanate was synthesized by a solid-liquid-solid (SLS) route from an ammonia-saturated aqueous solution of TiOSO4 at 0 °C. The effect of the postgrowth thermal annealing procedure to remove ice (water) and the proposed mechanism to explain the underlying transitions from the intermediate precursor to nanostructured TiO2 microrods with stacked 3D nanovoids were investigated. The small-angle X-ray scattering (SAXS) analysis indicates that at temperatures above 500 °C, the release of confined ice (water) takes place, which leads to the creation of self-assembled polyhedral nanovoids open to the surface. Their size ranges from 5 to 78 nm in both length and width, with a depth of ~3.88 nm. The first use of these stacked 1D TiO2 microrods as the working electrode in a photoelectrochemical (PEC) cell for water splitting is demonstrated. The estimated value of ζ-potential depends on both annealing temperature and crystallite size. Anatase sample 1D TiO/800 with ζ-potential (−29.1) mV and average crystallite size ~68 nm was observed to be highly stable in aqueous suspension. The SLS method yields low-cost 1D TiO2 materials possessing high photoreactivity with water. The PEC measurements indicate that three-dimensional hollow structures with a controlled geometry via patterned 1D TiO2 surface are promising materials for hydrogen generation from water splitting.

Keywords: tio2 microrods; water splitting; microrods stacked; stacked nanovoids; water; nanovoids photoelectrochemical

Journal Title: Pure and Applied Chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.