LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bis-γ-carbolines as new potential multitarget agents for Alzheimer’s disease

Photo from wikipedia

Abstract A new series of homobivalent Dimebon analogs, bis-γ-carbolines with alkylene, phenylenedialkylene, and triazole-containing spacers, was synthesized. Doubling the γ-carboline pharmacophore increased inhibitory potency against acetylcholinesterase (AChE) compared with Dimebon,… Click to show full abstract

Abstract A new series of homobivalent Dimebon analogs, bis-γ-carbolines with alkylene, phenylenedialkylene, and triazole-containing spacers, was synthesized. Doubling the γ-carboline pharmacophore increased inhibitory potency against acetylcholinesterase (AChE) compared with Dimebon, while keeping Dimebon’s anti-butyrylcholinesterase activity; therefore, leading to inversion of selectivity. Molecular docking revealed the reasons for the increased anti-AChE activity and ability to block AChE-induced aggregation of β-amyloid for bis-γ-carbolines, which became double-site inhibitors of AChE. Conjugates with ditriazole-containing spacers were the most active antioxidants in both the ABTS-test and prevention of lipid peroxidation in brain homogenates without inhibiting the mitochondrial permeability transition (MPT). Conjugates with alkylene (4a–d), phenylenedialkylene (4e), and monotriazole (8) spacers were less active as antioxidants but prevented induction of the MPT and increased the calcium retention capacity of mitochondria. Lead compound 4e showed neuroprotective potential in a cellular calcium overload model of neurodegeneration. Computational studies showed that all the bis-γ-carbolines were expected to have high values for intestinal absorption and very good blood-brain barrier permeability along with good drug-likeness. Overall, the results showed that new homobivalent Dimebon analogs exhibit an expanded spectrum of biological activity and improved pharmacological properties, making them promising candidates for further research and optimization as multitarget agents for Alzheimer’s disease treatment.

Keywords: agents alzheimer; alzheimer disease; multitarget agents; bis carbolines

Journal Title: Pure and Applied Chemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.