LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stabilization and Analytic Approximate Solutions of an Optimal Control Problem

Photo by charlesdeluvio from unsplash

Abstract This paper analyses a dynamical system derived from a left-invariant, drift-free optimal control problem on the Lie group SO(3) × ℝ3 × ℝ3 in deep connection with the important… Click to show full abstract

Abstract This paper analyses a dynamical system derived from a left-invariant, drift-free optimal control problem on the Lie group SO(3) × ℝ3 × ℝ3 in deep connection with the important role of the Lie groups in tackling the various problems occurring in physics, mathematics, engineering and economic areas [1, 2, 3, 4, 5]. The stability results for the initial dynamics were inconclusive for a lot of equilibrium points (see [6]), so a linear control has been considered in order to stabilize the dynamics. The analytic approximate solutions of the resulting nonlinear system are established and a comparison with the numerical results obtained via the fourth-order Runge-Kutta method is achieved.

Keywords: control; control problem; approximate solutions; analytic approximate; optimal control

Journal Title: Open Physics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.