LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanical properties, thermal and crystallization behavior of different surface-modified silica nanoparticle-filled PA66 composites

Photo by rabinam from unsplash

Abstract In this study, two different surface-modified silica nanoparticles, amino-functionalized nanosilica (ATS) and methyl-functionalized nanosilica (HDS), were separately used as nanofillers to fabricate PA66-based nanocomposites by melt blending. The morphology… Click to show full abstract

Abstract In this study, two different surface-modified silica nanoparticles, amino-functionalized nanosilica (ATS) and methyl-functionalized nanosilica (HDS), were separately used as nanofillers to fabricate PA66-based nanocomposites by melt blending. The morphology and interface characteristics of the two nanofillers in the composite system and their influence on the mechanical properties, thermal decomposition behavior, and crystallization behavior of PA66 were investigated. The Avrami and Mo methods were applied to study the non-isothermal crystallization kinetics of the nanocomposites. The results revealed that different surface modifications of silica nanoparticles can produce different influences on the mechanical properties and thermal decomposition behavior of the final nanocomposites. The addition of ATS helps increase the strength and stiffness of PA66/ATS nanocomposites, and in the meantime enhances the thermal stability of PA66. The case of HDS is opposite to that of ATS; however, its incorporation can improve the toughness of the material. In addition, the results also indicate that ATS possesses strong heterogeneous nucleation capability, the introduction of which can accelerate the crystallization rate and increase the crystallization temperature, as well as the degree of crystallinity of PA66, while HDS displays an obvious blocking effect on the crystallization process of PA66.

Keywords: pa66; crystallization; properties thermal; mechanical properties; different surface

Journal Title: Journal of Polymer Engineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.