LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rheology of poly(lactic acid)/poly(trimethylene terephthalate) blends compatibilized by clay or maleic anhydride-grafted poly(ethylene-octene) elastomer

Photo from wikipedia

Abstract Blends of two biobased polymers, poly(lactic acid) and poly(trimethylene terephthalate) (PTT), were compatibilized with either maleic anhydride-grafted poly(ethylene-octene) (mPOE) or organically modified clay (Cloisite 30B). Dynamic rheological measurements revealed… Click to show full abstract

Abstract Blends of two biobased polymers, poly(lactic acid) and poly(trimethylene terephthalate) (PTT), were compatibilized with either maleic anhydride-grafted poly(ethylene-octene) (mPOE) or organically modified clay (Cloisite 30B). Dynamic rheological measurements revealed that the mPOE inclusion resulted in a four-fold increase in viscosity relative to the noncompatibilized blends. By loading 3 wt% Cloisite 30B, the storage moduli of the blends showed a distinct solid-like behavior and high complex viscosity in the low-frequency region, which can be interpreted by the reduced sizes of the PTT phase evidenced from the scanning electron microscopy (SEM) micrography. A temperature sweep of the viscosity of the blends starting from 180°C revealed that the existence of an unmelted PTT dispersed phase might impede the decline in viscosity with increasing temperature near the melting point of PTT. The introduced compatibilizers can restrict the temperature-dependent morphology evolution, and the use of the 3 wt% 30B clay can prohibit the morphology evolution during the temperature sweep.

Keywords: poly lactic; poly trimethylene; lactic acid; clay; acid poly; rheology

Journal Title: Journal of Polymer Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.