LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Innovative γ rays irradiated styrene butadiene rubber/reclaimed waste tire rubber blends: a comparative study using mechano-chemical and microwave devulcanizing methods

Photo from wikipedia

Abstract Waste tire rubber was comparatively devulcanized by using two-roll mill mechano-chemical and microwave techniques at room temperature. The former technique was performed utilizing tetramethylthiuram disulfide and mercaptobenzothiazole disulfide. The… Click to show full abstract

Abstract Waste tire rubber was comparatively devulcanized by using two-roll mill mechano-chemical and microwave techniques at room temperature. The former technique was performed utilizing tetramethylthiuram disulfide and mercaptobenzothiazole disulfide. The developed devulcanized elastomer was characterized by scanning electron microscopy, chemical soluble fraction indication, and cross-link density determination. The blend was mixed in two roll mills by replacing a portion of virgin styrene-butadiene rubber (SBR) in a common formulation with the devulcanized waste rubber (DWR) product at various ratios, namely 10, 20 and 50 wt%. The morphological micrographs confirmed marked improvement in compatibility between both rubbery materials. The tensile strength and elastic modulus examinations of the fabricated blends ensured successful substitution of the virgin SBR with DWR. The abrasion resistance of SBR proved unaffected by blending with DWR. The compounded blends were subjected to γ rays at different radiation doses elevated up to 200 kGy and comparatively mechanically investigated.

Keywords: waste tire; mechano chemical; waste; chemical microwave; tire rubber; rubber

Journal Title: Journal of Polymer Engineering
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.