Abstract Metal-organic frameworks (MOFs) are highly porous crystalline materials, consisting of metal ions linked together with organic bridging ligands, exhibiting high surface areas. Lately, they have been utilized for gas… Click to show full abstract
Abstract Metal-organic frameworks (MOFs) are highly porous crystalline materials, consisting of metal ions linked together with organic bridging ligands, exhibiting high surface areas. Lately, they have been utilized for gas sorption, storage, sensing, drug delivery, etc. The chemistry of MOFs is expanding with an extraordinary speed, constituting both theoretical and experimental research, and MOFs have proved to be promising candidates so far. In this work, we have reviewed the density functional theory studies of MOFs in the adsorption and separation of the greenhouse gas, CO2, as well as the storage efficiencies for fuel gases like H2, CH4 and C2H2. The role of organic ligands, doping with other metal ions and functional groups, open metal sites and hybrid MOFs have been reviewed in brief.
               
Click one of the above tabs to view related content.