Hybrid magnetic elastomers (HMEs) belong to a novel type of magnetocontrollable elastic materials capable of demonstrating extensive variations of their parameters under the influence of magnetic fields. Like all cognate… Click to show full abstract
Hybrid magnetic elastomers (HMEs) belong to a novel type of magnetocontrollable elastic materials capable of demonstrating extensive variations of their parameters under the influence of magnetic fields. Like all cognate materials, HMEs are based on deformable polymer filled with a mixed or modified powder. The complex of properties possessed by the composite is a reflection of interactions occurring between the polymer matrix and the particles also participating in interactions among themselves. For example, introduction of magnetically hard components into the formula results in the origination of a number of significantly different behavioral features entirely unknown to magnetorheological composites of the classic type. Optical observation of samples based on magnetically hard filler gave the opportunity to establish that initial magnetization imparts magnetic moments to initially unmagnetized grains, as a result of which chain-like structures continue to be a feature of the material even after external field removal. In addition, applying a reverse field causes them to turn into the polymer as they rearrange into new ring-like structures. Exploration of the relationship between the rheological properties and magnetic field conducted on a rheometer using vibrational mechanical analysis showed an increase of the relative elastic modulus by more than two orders of magnitude or by 3.8 MPa, whereas the loss factor exhibited steady growth with the field up to a value of 0.7 being significantly higher than that demonstrated by elastomers with no magnetically hard particles. At the same time, measuring the electroconductivity of elastomers filled with a nickel-electroplated carbonyl iron powder made it possible to observe that such composites demonstrated an increase of variation of the resistivity of the composite influenced by magnetic field in comparison to elastomers containing untreated iron particles. The studies conducted indicate that this material exhibits both magnetorheological and magnetoresistive effect and does indeed have the potential for use in various types of devices.
               
Click one of the above tabs to view related content.