LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dependence of UO2 surface morphology on processing history within a single synthetic route

Photo from wikipedia

Abstract This study aims to determine forensic signatures for processing history of UO2 based on modifications in intermediate materials within the uranyl peroxide route. Uranyl peroxide was calcined to multiple… Click to show full abstract

Abstract This study aims to determine forensic signatures for processing history of UO2 based on modifications in intermediate materials within the uranyl peroxide route. Uranyl peroxide was calcined to multiple intermediate U-oxides including Am-UO3, α-UO3, and α-U3O8 during the production of UO2. The intermediate U-oxides were then reduced to α-UO2 via hydrogen reduction under identical conditions. Powder X-ray diffractometry (p-XRD) and X-ray photoelectron spectroscopy (XPS) were used to analyze powders of the intermediate U-oxides and resulting UO2 to evaluate the phase and purity of the freshly synthesized materials. All U-oxides were also analyzed via scanning electron microscopy (SEM) to determine the morphology of the freshly prepared powders. The microscopy images were subsequently analyzed using the Morphological Analysis for Materials (MAMA) version 2.1 software to quantitatively compare differences in the morphology of UO2 from each intermediate U-oxide. In addition, the microscopy images were analyzed using a machine learning model which was trained based on a VGG 16 architecture. Results show no differences in the XRD or XPS spectra of the UO2 produced from each intermediate. However, results from both the segmentation and machine learning proved that the morphology was quantifiably different. In addition, the morphology of UO2 was very similar, if not identical, to the intermediate material from which it was prepared, thus making quantitative morphological analysis a reliable forensic signature of processing history.

Keywords: processing history; microscopy; intermediate oxides; morphology; route

Journal Title: Radiochimica Acta
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.