Abstract Oxidative dehydrogenation of alkanes is a more appropriate approach than other conventional methods of light olefin production. Recently, several researchers have focused on more economical and cleaner processes because… Click to show full abstract
Abstract Oxidative dehydrogenation of alkanes is a more appropriate approach than other conventional methods of light olefin production. Recently, several researchers have focused on more economical and cleaner processes because of the high demand for olefins and environmental problems. This paper reviews a series of catalysts for the oxidative dehydrogenation of ethane, including transition-metal oxides, rare earth metal oxides, calcium oxide, supported alkali chlorides, molecular sieves, as well as monolithic, perovskite, and carbon catalysts. Also, a detailed literature review is presented for the comparison of effective parameters such as acid-base property, redox property, oxidant types, and oxygen species. Mechanisms proposed for the oxidative dehydrogenation of ethane are also presented. Recommendations for future researches are also discussed based on catalyst design, promotors, and reaction conditions.
               
Click one of the above tabs to view related content.