Abstract Since the advent of the industrial revolution, there has been a constant need of efficient catalysts for abatement of industrial toxic pollutants. This phenomenon necessitated the development of eco-friendly,… Click to show full abstract
Abstract Since the advent of the industrial revolution, there has been a constant need of efficient catalysts for abatement of industrial toxic pollutants. This phenomenon necessitated the development of eco-friendly, stable, and economically feasible catalytic materials like lanthanum-based perovskite-type oxides (PTOs) having well-defined crystal structure, excellent thermal, and structural stability, exceptional ionic conductivity, redox behavior, and high tunability. In this review, applicability of La-based PTOs in remediation of pollutants, including CO, NO x and VOCs was addressed. A framework for rationalizing reaction mechanism, substitution effect, preparation methods, support, and catalyst shape has been discussed. Furthermore, reactant conversion efficiencies of best PTOs have been compared with noble-metal catalysts for each application. The catalytic properties of the perovskites including electronic and structural properties have been extensively presented. We highlight that a robust understanding of electronic structure of PTOs will help develop perovskite catalysts for other environmental applications involving oxidation or redox reactions.
               
Click one of the above tabs to view related content.