LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Contributions of Lower Body Strength Parameters to Critical Power and Anaerobic Work Capacity.

Photo from wikipedia

This study examined the contribution of lower body strength and isokinetic peak torque measures to the prediction of critical power (CP) and anaerobic work capacity (AWC). Fourteen recreationally trained males… Click to show full abstract

This study examined the contribution of lower body strength and isokinetic peak torque measures to the prediction of critical power (CP) and anaerobic work capacity (AWC). Fourteen recreationally trained males (mean ± SD age: 22.4 ± 2.5 yrs; height: 177.9 ± 7.7 cm; body mass: 84.2 ± 12.4 kg) with anaerobic training experience completed this study. The lower body strength measures included one repetition max (1RM) bilateral back squat [BSq], isokinetic peak torque at 30°·sec [PT30] and isokinetic peak torque at 240°·sec [PT240]) of the dominant leg. The CP and AWC were determined from the 3-min all-out CP cycle ergometer test (CP3MT), with the resistance set at 4.5% of the total body mass. The CP was defined as the mean power output over the final 30s of the test and the AWC was calculated using the equation, AWC = 150s (P150 - CP), where P150 equals the mean power output for the first 150s. Stepwise regression analyses indicated that only BSq contributed significantly to the prediction of AWC (AWC = 0.0527[BSq] + 8.094 [SEE = 2.151 kJ; p = 0.012]), with a correlation of r = 0.423. None of the strength parameters significantly predicted CP. These findings indicated that BSq strength accounted for 42% of the variance in AWC, but lower body strength was not related to CP. The current results indirectly supports the unique metabolic characteristics of both CP and AWC in providing separate measures of an individual's aerobic and anaerobic capabilities, respectively.

Keywords: strength; body strength; critical power; body; lower body

Journal Title: Journal of Strength and Conditioning Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.