LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Determining a Resting Metabolic Rate Prediction Equation for Collegiate Female Athletes.

Photo by lee_hisu from unsplash

Watson, AD, Zabriskie, HA, Witherbee, KE, Sulavik, A, Gieske, BT, and Kerksick, CM. Determining a resting metabolic rate prediction equation for collegiate female athletes. J Strength Cond Res XX(X): 000-000,… Click to show full abstract

Watson, AD, Zabriskie, HA, Witherbee, KE, Sulavik, A, Gieske, BT, and Kerksick, CM. Determining a resting metabolic rate prediction equation for collegiate female athletes. J Strength Cond Res XX(X): 000-000, 2018-A lack of evidence exists regarding the accuracy of common resting metabolic rate (RMR) prediction equations in athletic female populations. The purpose of this research was to measure RMR in a large cohort of NCAA Division II female athletes and use regression techniques to develop new prediction equations. Sixty-six female athletes from 11 different sports completed this protocol, which included skinfold measurements followed by an RMR assessment using indirect calorimetry. The average RMR was 1,466 ± 150 kcal·d. Many between-sport differences in body composition were identified, with gymnastics athletes having the lowest body fat percentage (p < 0.05) and basketball athletes having the greatest absolute fat-free mass (p < 0.05). Resting metabolic rate was moderately correlated (p < 0.05) with height (r = 0.52), total mass (r = 0.59), and fat-free mass (r = 0.54). Two equations were developed, both of which were more accurate for this population than other RMR prediction equations. One of the new equations, which used height and body mass as covariates (equation 1), was slightly more accurate than the equation using body composition parameters (equation 2). The new equations were cross-validated using a randomly selected subset (n = 22) of the original sample. The subset did not show statistically different results from the remainder of the sample (n = 44) between equation 1 (p = 0.083) and equation 2 (p = 0.22). Equation 1, which had more easily measurable parameters, exhibited heightened accuracy, which has important implications for implementation among athletes, coaches, and athletic support staff.

Keywords: resting metabolic; female athletes; metabolic rate; prediction; equation

Journal Title: Journal of Strength and Conditioning Research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.