LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Neuronal Activity Distributed in Multiple Cortical Areas during Voluntary Control of the Native Arm or a Brain-Computer Interface

Photo by robbie36 from unsplash

Abstract Voluntary control of visually-guided upper extremity movements involves neuronal activity in multiple areas of the cerebral cortex. Studies of brain-computer interfaces (BCIs) that use spike recordings for input, however,… Click to show full abstract

Abstract Voluntary control of visually-guided upper extremity movements involves neuronal activity in multiple areas of the cerebral cortex. Studies of brain-computer interfaces (BCIs) that use spike recordings for input, however, have focused largely on activity in the region from which those neurons that directly control the BCI, which we call BCI units, are recorded. We hypothesized that just as voluntary control of the arm and hand involves activity in multiple cortical areas, so does voluntary control of a BCI. In two subjects (Macaca mulatta) performing a center-out task both with a hand-held joystick and with a BCI directly controlled by four primary motor cortex (M1) BCI units, we recorded the activity of other, non-BCI units in M1, dorsal premotor cortex (PMd) and ventral premotor cortex (PMv), primary somatosensory cortex (S1), dorsal posterior parietal cortex (dPPC), and the anterior intraparietal area (AIP). In most of these areas, non-BCI units were active in similar percentages and at similar modulation depths during both joystick and BCI trials. Both BCI and non-BCI units showed changes in preferred direction (PD). Additionally, the prevalence of effective connectivity between BCI and non-BCI units was similar during both tasks. The subject with better BCI performance showed increased percentages of modulated non-BCI units with increased modulation depth and increased effective connectivity during BCI as compared with joystick trials; such increases were not found in the subject with poorer BCI performance. During voluntary, closed-loop control, non-BCI units in a given cortical area may function similarly whether the effector is the native upper extremity or a BCI-controlled device.

Keywords: bci; bci units; activity; voluntary control; non bci

Journal Title: eNeuro
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.