An efficient, accurate, and timely DNA damage response (DDR) is crucial for the maintenance of genome integrity. Here, we report that ten‐eleven translocation dioxygenase (TET) 3‐mediated conversion of 5‐methylcytosine (5mC)… Click to show full abstract
An efficient, accurate, and timely DNA damage response (DDR) is crucial for the maintenance of genome integrity. Here, we report that ten‐eleven translocation dioxygenase (TET) 3‐mediated conversion of 5‐methylcytosine (5mC) to 5‐hydroxymethylcytosine (5hmC) in response to ATR‐dependent DDR regulates DNA repair. ATR‐dependent DDR leads to dynamic changes in 5hmC levels and TET3 enzymatic activity. We show that TET3 is an ATR kinase target that oxidizes DNA during ATR‐dependent DNA damage repair. Modulation of TET3 expression and activity affects DNA damage signaling and DNA repair and consequently cell death. Our results provide novel insight into ATR‐mediated DDR, in which TET3‐mediated DNA demethylation is crucial for efficient DNA repair and maintenance of genome stability.
               
Click one of the above tabs to view related content.