LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

New roles for Wnt and BMP signaling in neural anteroposterior patterning

Photo by refargotohp from unsplash

During amphibian development, neural patterning occurs via a two‐step process. Spemann's organizer secretes BMP antagonists that induce anterior neural tissue. A subsequent caudalizing step re‐specifies anterior fated cells to posterior… Click to show full abstract

During amphibian development, neural patterning occurs via a two‐step process. Spemann's organizer secretes BMP antagonists that induce anterior neural tissue. A subsequent caudalizing step re‐specifies anterior fated cells to posterior fates such as hindbrain and spinal cord. The neural patterning paradigm suggests that a canonical Wnt‐signaling gradient acts along the anteroposterior axis to pattern the nervous system. Wnt activity is highest in the posterior, inducing spinal cord, at intermediate levels in the trunk, inducing hindbrain, and is lowest in anterior fated forebrain, while BMP‐antagonist levels are constant along the axis. Our results in Xenopus laevis challenge this paradigm. We find that inhibition of canonical Wnt signaling or its downstream transcription factors eliminates hindbrain, but not spinal cord fates, an observation not compatible with a simple high‐to‐low Wnt gradient specifying all fates along the neural anteroposterior axis. Additionally, we find that BMP activity promotes posterior spinal cord cell fate formation in an FGF‐dependent manner, while inhibiting hindbrain fates. These results suggest a need to re‐evaluate the paradigms of neural anteroposterior pattern formation during vertebrate development.

Keywords: neural anteroposterior; roles wnt; wnt bmp; new roles; spinal cord

Journal Title: EMBO reports
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.