LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sodium permeable and “hypersensitive” TREK‐1 channels cause ventricular tachycardia

In a patient with right ventricular outflow tract (RVOT) tachycardia, we identified a heterozygous point mutation in the selectivity filter of the stretch‐activated K2P potassium channel TREK‐1 (KCNK2 or K2P2.1).… Click to show full abstract

In a patient with right ventricular outflow tract (RVOT) tachycardia, we identified a heterozygous point mutation in the selectivity filter of the stretch‐activated K2P potassium channel TREK‐1 (KCNK2 or K2P2.1). This mutation introduces abnormal sodium permeability to TREK‐1. In addition, mutant channels exhibit a hypersensitivity to stretch‐activation, suggesting that the selectivity filter is directly involved in stretch‐induced activation and desensitization. Increased sodium permeability and stretch‐sensitivity of mutant TREK‐1 channels may trigger arrhythmias in areas of the heart with high physical strain such as the RVOT. We present a pharmacological strategy to rescue the selectivity defect of the TREK‐1 pore. Our findings provide important insights for future studies of K2P channel stretch‐activation and the role of TREK‐1 in mechano‐electrical feedback in the heart.

Keywords: stretch; sodium permeable; tachycardia; trek; trek channels

Journal Title: EMBO Molecular Medicine
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.