LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Infancy‐onset diabetes caused by de‐regulated AMPylation of the human endoplasmic reticulum chaperone BiP

Photo from wikipedia

Dysfunction of the endoplasmic reticulum (ER) in insulin‐producing beta cells results in cell loss and diabetes mellitus. Here we report on five individuals from three different consanguineous families with infancy‐onset… Click to show full abstract

Dysfunction of the endoplasmic reticulum (ER) in insulin‐producing beta cells results in cell loss and diabetes mellitus. Here we report on five individuals from three different consanguineous families with infancy‐onset diabetes mellitus and severe neurodevelopmental delay caused by a homozygous p.(Arg371Ser) mutation in FICD. The FICD gene encodes a bifunctional Fic domain‐containing enzyme that regulates the ER Hsp70 chaperone, BiP, via catalysis of two antagonistic reactions: inhibitory AMPylation and stimulatory deAMPylation of BiP. Arg371 is a conserved residue in the Fic domain active site. The FICDR371S mutation partially compromises BiP AMPylation in vitro but eliminates all detectable deAMPylation activity. Overexpression of FICDR371S or knock‐in of the mutation at the FICD locus of stressed CHO cells results in inappropriately elevated levels of AMPylated BiP and compromised secretion. These findings, guided by human genetics, highlight the destructive consequences of de‐regulated BiP AMPylation and raise the prospect of tuning FICD's antagonistic activities towards therapeutic ends.

Keywords: endoplasmic reticulum; onset diabetes; infancy onset; bip; chaperone bip; ampylation

Journal Title: EMBO Molecular Medicine
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.