LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Straight Path Handling Anomalies of Passenger Cars Induced by Suspension Component and Assembly Tolerances

Photo by egor_vikhrev from unsplash

The effects on handling due to suspension component and assembly tolerances are analysed focusing on three anomalies affecting passenger cars travelling on straight paths, namely ‘pull to side’, ‘steering wheel… Click to show full abstract

The effects on handling due to suspension component and assembly tolerances are analysed focusing on three anomalies affecting passenger cars travelling on straight paths, namely ‘pull to side’, ‘steering wheel misalignment’ and ‘drift leeward’. These anomalies do not constitute safety problems but represent a cost factor in the automotive industry since they occur in small but not negligible percentage of the overall car production. The present contribution is therefore focused on understanding which are their causes, and on reducing their extent, in the specific case of vehicles with front Double wishbone suspension and rear Five arms suspension. To this purpose, the vehicle assembly process is analysed in terms of errors and tolerances for identify the most influential parameters on handling irregularities. Sensitivity analysis by multibody virtual modelling, and subsequent correlation with experimental data from pre-setting and wheel aligner benches, have provide sufficient information for setting tolerance thresholds, able to keep the handling anomalies under study within acceptable bounds. As a result, ‘pull to side’ and ‘steering wheel misalignment’ has been found to be mainly related to the set up phase of wheel angles (front camber angles influencing pull to side, front and rear toe angles influencing steering wheel misalignment), while the main cause of ‘drift leeward’ has been identified with (rear) ride steer. Application of the procedure to a production line led to a consistent reduction (from 3% down to about 1% of the overall production) of anomalous vehicles.

Keywords: passenger cars; component assembly; suspension component; wheel; suspension; assembly tolerances

Journal Title: International Journal of Automotive and Mechanical Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.