Stressful environmental exposures incurred early in development can affect postnatal metabolic health and susceptibility to non-communicable diseases in adulthood, although the molecular mechanisms by which this occurs have yet to… Click to show full abstract
Stressful environmental exposures incurred early in development can affect postnatal metabolic health and susceptibility to non-communicable diseases in adulthood, although the molecular mechanisms by which this occurs have yet to be elucidated. Here we use a mouse model to investigate how assorted in vitro exposures restricted exclusively to the preimplantation period affect transcription both acutely in embryos and long-term in subsequent offspring adult tissues, to determine if reliable transcriptional markers of in vitro stress are present at specific developmental time points and throughout development. Each in vitro fertilization or embryo culture environment led to a specific and unique blastocyst transcriptional profile, but we identified a common 18-gene and 9-pathway signature of preimplantation embryo manipulation that was present in all in vitro embryos irrespective of culture condition or method of fertilization. This fingerprint did not persist throughout development and there was no clear transcriptional cohesion between adult IVF offspring tissues or compared to their preceding embryos, indicating a tissue-specific impact of in vitro stress on gene expression. However, the transcriptional changes present in each IVF tissue were targeted by the same upstream transcriptional regulators, which provide insight as to how acute transcriptional responses to stressful environmental exposures might be preserved throughout development to influence adult gene expression.
               
Click one of the above tabs to view related content.