The amniotic fluid provides mechanical protection and immune defense against pathogens to the fetus. Indeed, components of the innate and adaptive immunity, including B cells, have been described in the… Click to show full abstract
The amniotic fluid provides mechanical protection and immune defense against pathogens to the fetus. Indeed, components of the innate and adaptive immunity, including B cells, have been described in the amniotic fluid. However, limited information concerning phenotype and functionality of amniotic fluid B cells is available. Hence, we aimed to perform a full phenotypical and functional characterization of amniotic fluid B cells in normal pregnancy and in a mouse model of preterm birth. Phenotypic analysis depicted the presence of two populations of amniotic fluid B cells: an immature population, resembling B1 progenitor cells and a more mature population. Further isolation and in vitro co-culture with a bone marrow stroma cell line demonstrated the capacity of the immature B cells to mature. This was further supported by spontaneous production of IgM, a feature of the B1 B cell sub-population. An additional in vitro stimulation with lipopolysaccharide induced the activation of amniotic fluid B cells as well as the production of pro and anti-inflammatory cytokines. Furthermore, amniotic fluid B cells were expanded in the acute phase of LPS-induced preterm birth. Overall our data adds new insight not only on the phenotype and developmental stage of the amniotic fluid B1 B cells but especially on their functionality. This provides important information for a better understanding of their role within the amniotic fluid as immunological protective barrier, especially with regard to intraamniotic infection and preterm birth.
               
Click one of the above tabs to view related content.