LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Whole genome DNA methylation analysis of the sperm in relation to bull fertility.

Photo from wikipedia

Subfertile bulls may cause huge economic losses in dairy production since their semen could be used to inseminate thousands of cows by artificial insemination. This study adopted whole-genome enzymatic methyl… Click to show full abstract

Subfertile bulls may cause huge economic losses in dairy production since their semen could be used to inseminate thousands of cows by artificial insemination. This study adopted whole-genome enzymatic methyl sequencing and aimed to identify candidate DNA methylation markers in bovine sperm that correlate with bull fertility. Twelve bulls were selected (High Bull Fertility = 6; Low Bull Fertility = 6) based on the industry's internally used Bull Fertility Index (BFI). After sequencing, a total of 450 CpG had a DNA methylation difference higher than 20% (q<0.01) had been screened. The sixteen most significant differentially methylated regions(DMRs) were identified using a 10% methylation difference cut-off (q<5.88x10-16). Interestingly, most of the differentially methylated cytosines (DMCs) and DMRs were distributed on the X and Y chromosomes, demonstrating that the sex chromosomes play essential roles in bull fertility. Additionally, the functional classification showed that the beta-defensin family, zinc finger protein family, and olfactory and taste receptors could be clustered. Moreover, the enriched G protein-coupled receptors such as neurotransmitter receptors, taste receptors, the olfactory receptor family, and ion channels indicated that the acrosome reaction and capacitation processes are pivotal for bull fertility. In conclusion, this study identified the sperm-derived bull fertility-associated DMRs and DMCs at the whole genome level, which could complement and integrate into the existing genetic evaluation methods, increasing our decisive capacity to select good bulls and explain bull fertility better in the future.

Keywords: fertility; dna methylation; whole genome; bull fertility

Journal Title: Reproduction
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.