LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

BMP Signaling Determines Body Size via Transcriptional Regulation of Collagen Genes in Caenorhabditis elegans

Photo by ramaissance from unsplash

Body size is a tightly regulated phenotype in metazoans that depends on both intrinsic and extrinsic factors. While signaling pathways are known to control organ and body size, the downstream… Click to show full abstract

Body size is a tightly regulated phenotype in metazoans that depends on both intrinsic and extrinsic factors. While signaling pathways are known to control organ and body size, the downstream effectors that mediate their effects remain poorly understood. In the nematode Caenorhabditis elegans, a Bone Morphogenetic Protein (BMP)-related signaling pathway is the major regulator of growth and body size. We investigated the transcriptional network through which the BMP pathway regulates body size and identified cuticle collagen genes as major effectors of growth control. We demonstrate that cuticle collagens can act as positive regulators (col-41), negative regulators (col-141), or dose-sensitive regulators (rol-6) of body size. Moreover, we find a requirement of BMP signaling for stage-specific expression of cuticle collagen genes. We show that the Smad signal transducers directly bind conserved Smad-binding elements in regulatory regions of col-141 and col-142, but not of col-41. Hence, cuticle collagen genes may be directly and indirectly regulated via the BMP pathway. Our work thus connects a conserved signaling pathway with its critical downstream effectors, advancing insight into how body size is specified. Since collagen mutations and misregulation are implicated in numerous human genetic disorders and injury sequelae, understanding how collagen gene expression is regulated has broad implications.

Keywords: size; collagen genes; body size; caenorhabditis elegans

Journal Title: Genetics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.