LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modulating Mistranslation Potential of tRNASer in Saccharomyces cerevisiae.

Photo from archive.org

Mistranslation, incorporating an amino acid not specified by the "standard" genetic code, has applications in research and synthetic biology. Since mistranslation is toxic, its level must be modulated. Using a… Click to show full abstract

Mistranslation, incorporating an amino acid not specified by the "standard" genetic code, has applications in research and synthetic biology. Since mistranslation is toxic, its level must be modulated. Using a serine tRNA with a proline anticodon, we identify... Transfer RNAs (tRNAs) read the genetic code, translating nucleic acid sequence into protein. For tRNASer the anticodon does not specify its aminoacylation. For this reason, mutations in the tRNASer anticodon can result in amino acid substitutions, a process called mistranslation. Previously, we found that tRNASer with a proline anticodon was lethal to cells. However, by incorporating secondary mutations into the tRNA, mistranslation was dampened to a nonlethal level. The goal of this work was to identify second-site substitutions in tRNASer that modulate mistranslation to different levels. Targeted changes to putative identity elements led to total loss of tRNA function or significantly impaired cell growth. However, through genetic selection, we identified 22 substitutions that allow nontoxic mistranslation. These secondary mutations are primarily in single-stranded regions or substitute G:U base pairs for Watson-Crick pairs. Many of the variants are more toxic at low temperature and upon impairing the rapid tRNA decay pathway. We suggest that the majority of the secondary mutations affect the stability of the tRNA in cells. The temperature sensitivity of the tRNAs allows conditional mistranslation. Proteomic analysis demonstrated that tRNASer variants mistranslate to different extents with diminished growth correlating with increased mistranslation. When combined with a secondary mutation, other anticodon substitutions allow serine mistranslation at additional nonserine codons. These mistranslating tRNAs have applications in synthetic biology, by creating "statistical proteins," which may display a wider range of activities or substrate specificities than the homogenous form.

Keywords: mistranslation potential; potential trnaser; biology; mistranslation; modulating mistranslation; secondary mutations

Journal Title: Genetics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.