Cellulose nanocrystals (CNCs) were modified with methyl methacrylate (MMA) to improve the properties of the resulting three-dimensional (3D) stereolithography printed CNC/methacrylate (MA) resin composites. The dispersibility of the MMA-modified CNCs… Click to show full abstract
Cellulose nanocrystals (CNCs) were modified with methyl methacrylate (MMA) to improve the properties of the resulting three-dimensional (3D) stereolithography printed CNC/methacrylate (MA) resin composites. The dispersibility of the MMA-modified CNCs (MMA-CNCs) was substantially improved, as evidenced by the limited precipitation in the MA solution. Thermal gravimetry and differential scanning calorimetry measurements showed that the pyrolytic temperature of the MMA-CNC was 110 °C higher than that of the CNCs; the pyrolytic temperature and glass transition temperature of the resulting MMA-CNC/MA composites were higher than those of the CNC/MA. The tensile strength and modulus of the MMA-CNC/MA composites were improved by up to 38.3 MPa and 3.07 GPa, respectively, compared to those of the CNC/MA composites. These results demonstrated that the modification of CNC with MMA is a feasible approach to substantially improve the mechanical properties and thermal stability of the resulting MA-based composites.
               
Click one of the above tabs to view related content.